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Società Italiana di Fisica
Springer-Verlag 1999

Interaction induced delocalization of two particles: large system
size calculations and dependence on interaction strength

K.M. Frahma

Laboratoire de Physique Quantiqueb, Université Paul Sabatier, 31062 Toulouse Cedex 4, France
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Abstract. The localization length L2 of two interacting particles in a one-dimensional disordered system is
studied for very large system sizes by an efficient and accurate variant of the Green function method. The
numerical results (at the band center) can be well described by the functional form L2 = L1[0.5 + c(U)L1]
where L1 is the one-particle localization length and the coefficient c(U) ≈ 0.074 |U |/(1 + |U |) depends on
the strength U of the on-site Hubbard interaction. The Breit-Wigner width or equivalently the (inverse) life
time of non-interacting pair states is analytically calculated for small disorder and taking into account the
energy dependence of the one-particle localization length. This provides a consistent theoretical explanation
of the numerically found U-dependence of c(U).

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.10.Bg General formula-
tion of transport theory – 71.55.Jv Disordered structures; amorphous and glassy solids

1 Introduction

The quantum eigenstates of non-interacting particles in a
random potential are localized if the fluctuations of the po-
tential (the disorder strength) are sufficiently strong (for
a review see [1]). This phenomenon of Anderson localiza-
tion is particularly well-understood for one-dimensional
or quasi one-dimensional geometries where localization
even persists for arbitrarily small disorder strength. For
this case efficient numerical methods [1] and also powerful
analytical theories in terms of the supersymmetric non-
linear σ-model [2,3] and the Fokker-Planck approach for
the transfer matrix [3,4] are available.

Dorokhov [5] and, recently, Shepelyansky [6] consid-
ered the case of two interacting particles (TIP) moving in
a one-dimensional random potential for which they pre-
dicted a strong enhancement of the localization length for
the pair-states due to the interaction. While the results
of Dorokhov are only valid for the case of a strongly at-
tractive interaction confining both particles together, She-
pelyansky also considered a local, attractive or repulsive
Hubbard interaction. He claimed that among many states
with both particles being localized far away, there are a
few pairs-states where the typical distance between the
particles is of the order of the one-electron localization
length L1 and the center of mass coordinate is charac-
terized by a pair-localization length L2 � L1. Mapping
the original problem on a random band-matrix model su-
perimposed with large diagonal elements, he found for
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the case L1 � 1 (length measured in units of the lattice
spacing)

L2 ∼
U2

t2
L2

1 (1)

where U is the strength of the Hubbard interaction and t
is the value of the hopping matrix element. The disorder
strength enters through the value of L1 (see below). This
estimate has been confirmed by Imry [7] using a different
argument based on the Thouless scaling block picture [8].
A crucial role is played here by the spreading width Γ (also
called Breit-Wigner width) which is the energy scale over
which unperturbed states are mixed due to the interac-
tion. Imry identified this energy scale with a generalized
Thouless energy defined as the sensitivity of the energy
levels with respect to a change of the boundary conditions
for a finite block of size L1. The pair-localization length is
then obtained by scaling theory as L2/L1 = Γ/∆2 where
∆2 ∼ t/L2

1 is the two-particle level spacing in the finite
block. Using an ergodic hypothesis for the one-particle
eigenfunctions, one can estimate the spreading width by
Fermi’s golden rule Γ ∼ U2/(t L1) [6,7,9] reproducing
equation (1).

First numerical studies in terms of finite size trans-
fer matrix calculations [10] and exact diagonalization [11]
confirmed the strong enhancement due to the interaction.
Borgonovi et al. [12] showed that the enhancement effect
also appears in a related model of two interacting kicked
rotors for which it is possible to determine directly the
quantum time-evolution. von Oppen et al. [13] introduced
an efficient method to calculate the two-particle Green
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function and based on their numerical results they pro-
posed the scaling relation L2/L1 ≈ 0.5+0.054 |U |L1 with
a linear dependence on U contradicting the estimate (1).
This behavior was explained by Jacquod et al. [14] who
calculated analytically the spreading width for the limit
of vanishing disorder. Resumming an infinite series of di-
agrams they obtained for energies close to the band cen-
ter Γ/∆2 ∼ L1 |U |/

√
t2 + (U/4)2. Therefore the physical

arguments of references [6,7,9] did not contradict the re-
sults of [13] but the application of Fermi’s golden rule cor-
responding to lowest order perturbation theory and the
ergodic hypothesis appeared to be insufficient to deter-
mine Γ .

It is worth mentioning that the topic also inspired
considerable progress in the understanding [15–17] of the
random band matrix model with superimposed diagonal
originally introduced and used by Shepelyansky [6]. Fur-
thermore, in reference [18], a sophisticated random ma-
trix model was proposed which works for arbitrary space
dimension and takes properly both particle coordinates
(relative and center of mass coordinate) into account.
This model can be mapped onto an effective supermatrix
non-linear σ-model and it is thus possible to explain fea-
tures like a logarithmically suppressed diffusion or a log-
arithmically increasing pair size [18] found previously by
Borgonovi et al. [12] for the pair-diffusive regime in d > 2
dimensions where all states are delocalized. Subsequent
work was concerned with the role of the level statistics
[19] and, very recently, with the fractal structure of the
coupling matrix elements due to the interaction [20].

Despite the available evidence in favor for the enhance-
ment effect the general situation is still not really clear,
due to different proposals for the dependence of L2 on
W and U [20–22] and the claim of Römer et al. that the
effect completely vanishes in the limit of infinite system
size [23]. This claim, which was contested in [24], is based
on the finite size extrapolation of the localization length
calculated by a transfer matrix method for finite square
samples being put together to an infinite strip.

In this work, we present numerical results (Sect. 2)
based on an exact and efficient variant of the Green func-
tion method introduced in reference [13] that allows to
treat rather large system sizes, i.e. N ≥ 1000. This is in-
deed important for small disorder values in order to per-
form an accurate finite size extrapolation. We furthermore
present a second variant which consists of the recursive
Green function technique applied to an effective band ma-
trix Hamiltonian as considered in [13]. In this approach
one can indeed take the limit N →∞ and the results we
find are consistent with those of the finite size extrapola-
tion of the first variant. The issue of an accurate variant
of the Green function method is actually of considerable
interest since Römer et al. [23] had questioned the original
results of von Oppen et al. due to a certain approxima-
tion applied in the original approach of reference [13]. We
find in our calculations qualitative agreement with those
results concerning the strong enhancement of the local-
ization length L2 and the dependence on L1. However,
we find nevertheless a quantitative difference concerning

the dependence on the interaction strength U which is
only linear for sufficiently small U . To understand this,
we reconsider the issue of the determination of the Breit-
Wigner width Γ for small disorder (Sect. 3). Improving
the Γ estimate of reference [14], we can indeed explain
the modified U dependence.

Very recently, we learned of related relevant work
[25,26] in which the TIP Green function was evaluated
by a decimation method for system sizes up to N = 251
[25] or N = 300 [26].

2 Numerical Green function approach

We consider two particles in a disordered system interact-
ing via a local Hubbard-interaction and characterized by
the following tight binding Hamiltonian,

H = −t
∑
x,y

(
|x+ 1, y〉〈x, y|+ |x, y + 1〉〈x, y|+ h.c.

)
+
∑
x,y

(
ε(x) + ε(y) + U δx,y

)
|x, y〉〈x, y|. (2)

x and y denote the positions of the first and the second
particle, respectively. t is the strength of nearest neighbor
coupling matrix element which we put to unity in the fol-
lowing and U is the value of the on-site interaction. The
disorder energies are random, i.e. ε(x) ∈ [−W/2, W/2]
with W being the disorder strength. At vanishing interac-
tion U = 0 the one-particle eigenstates (at a one-particle
energy E = 0) are localized with the localization length:
L1 ≈ 105/W 2 [1]. In this work we do not discuss the par-
ticular effects of symmetric or anti-symmetric two-particle
states (bosons or fermions). The on-site Hubbard interac-
tion only acts on the subspace of symmetric states and our
results apply therefore to the case of Bosons. However, for
the actual calculations and the representation, we find it
more convenient to keep all states.

To determine the two-particle localization length, we
consider as in reference [13] the two-particle Green func-
tion. Since we are interested in the coherent propagation
the particles being close, we determine only the Green
function matrix elements of doubly occupied states |xx〉,

gxy = 〈xx| (E −H)−1 |yy〉. (3)

A priori, for a finite system of size N , the matrix inverse
in (3) has to be evaluated for a N2 × N2 matrix. Fortu-
nately, von Oppen et al. [13] have shown that this prob-
lem can be reduced to an effective Green function on an
N -dimensional space because the interaction operator is
proportional to the projector on the space of doubly oc-
cupied states. The matrix g in (3) can be calculated [13]
from an N ×N -matrix equation

g = g0
1

1− g0 U
, where g0 = g

∣∣∣
U=0

. (4)
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The matrix g0 is given in terms of the one-particle eigen-
states ϕα(x) and the one-particle energies Eα via,

(g0)xy =
∑
α,β

ϕα(x)ϕβ(x)
1

E −Eα −Eβ
ϕβ(y)ϕα(y). (5)

The two-particle localization length L2 is determined by
the exponential decay gx0,x ∼ exp(−|x − x0|/L2) corre-
sponding to

1

L2
= − lim

N→∞

1

N

〈
ln

∣∣∣∣gx,x+N

gx,x

∣∣∣∣〉· (6)

The ensemble average is performed over different disorder
realizations and for practical purposes also over some ini-
tial sites x close to one boundary. The extra denominator
gx,x in (6) is not relevant in the limit N → ∞ but pro-
vides a considerable improvement if (6) is evaluated for
finite N . For vanishing interaction, we expect according
to (5) L2(U = 0) ≈ L1/2 [13].

In reference [13], equation (4) was evaluated for a
finite system by employing two approximations. First,
von Oppen et al. omitted the first factor g0 and, second,
they did not evaluate the full matrix g0 but only a suf-
ficiently large band on which they applied the recursive
Green function technique [27,28] for the matrix inverse
in (4). Since g0 is indeed a band matrix of width ∼ L1

both approximations seem to be well justified provided
L1 < L2/2. However, the validity of the corresponding re-
sults was seriously questioned by Römer et al. [23] due to
these approximations and, furthermore, the limit of very
small (vanishing) interaction cannot accurately be studied
within this approach.

We have evaluated (4) exactly without any approxima-
tions. For this we note two important points concerning
the numerical precision and the efficiency. First, the mul-
tiplication of the band matrix g0 with the matrix inverse
in (4) requires that the relative error of the exponentially
small matrix elements of g0 far away from the diagonal
is small [29]. Otherwise, equation (6) provides incorrect
results for L2. This in turn requires that the exponential
tails of the ϕα(x) are accurate over the whole length scale
x = 1, . . . , N . According to this, we have determined the
one-electron eigenstates by the method of inverse vector
iteration [30] which provides the required accuracy by suf-
ficiently increasing the number of iterations. The second
point concerns the efficiency. Here the matrix inverse in
(4), which costs of the order of N3 operations, is actually
not the limiting factor. This is due to the necessary eval-
uation of g0. The naive application of (5) already costs
of the order of N4 operations. Even though this number
can be reduced by exploiting the exponential decay of the
ϕα(x) this does not yield any significant improvement for
small disorder values when L1 ∼ 50−100. Fortunately, it
is possible to determine g0 exactly with N3 operations.
For this we rewrite (5) in the form

(g0)xy =
∑
α

ϕα(x)G(1)
xy (E −Eα)ϕβ(y), (7)
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Fig. 1. Finite size two-particle localization length L2(N) for
U = 1.5, E = 0 and W = 1.0 versus 1/N (100 ≤ N ≤ 1400).
The full curve corresponds to the fit L−1

2 (N) = L−1
2 + C/N

and the dash line corresponds to the fit L2(N) = L2 + C̃/N .
The insert shows 1/L2(N) versus 1/N with the corresponding
linear fit.

where G
(1)
xy (E) = [(E − h1)−1]xy is the Green function at

energy E of the one-particle Hamiltonian

h1 = −t
∑
x

(|x〉〈x+ 1|+ h.c.) +
∑
x

ε(x) |x〉〈x|. (8)

Due to the tridiagonal form of h1, one can compute

G
(1)
xy (E) with only N2 operations rather than the usual

N3 operations needed for the inverse of a full N × N -

matrix. Since equation (7) requires G
(1)
xy (E − Eα) at N

different energies E − Eα one needs N3 operations. Fur-
thermore the summation in (7) itself, the diagonalization
of h1, and the matrix inverse (and multiplication) in (4)
also require only N3 operations. This enhances the numer-
ical prefactor and the full algorithm requires C N3 opera-
tions while the naive summation of (5) requires (1/4)N4

operations (when taking into account all symmetries). It
turns out that for N = 200 the new algorithm is about 37
times faster than the naive summation corresponding to
C ≈ 1.35.

We have used two variants of the Green function
method. The first is based on a finite size extrapolation
(FSE) to determine the limit L2 = limN→∞ L2(N). For
this, we have calculated the ensemble averaged inverse lo-
calization length L−1

2 (N) for different system sizes using
the exact projected Green function g as given in (4). The
limit for N →∞ has been determined by the linear fit in
1/N of the inverse localization length:

1

L2(N)
≈

1

L2
+
C

N
· (9)

This ansatz for the finite size extrapolation is highly sug-
gestive from equation (6). Assuming, that the typical value
of gx,x+N does not depend on N if N � L2, we see that
(9) reproduces both limits N � L2 and N � L2.

The quality of the fit is indeed confirmed by the ex-
plicit numerical values as can be seen in Figure 1. For
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W = 1.0 (L1 = 105), E = 0, U = 1.5, and 100 ≤
N ≤ 1400, the fit (9) works quite well while the direct

fit L2(N) = L2 + C̃/N is very poor for the considered
range of N values. Of course, for L2 � N both extrap-
olation schemes are equivalent. However, for the case of
Figure 1, L2 and N are comparable and the choice of the
correct method is crucial.

To obtain an independent verification of the extrap-
olation scheme (9), we have also used a second method
which permits to determine L2 directly for quasi infinite
systems. For this, as in reference [13], we have omitted
the first factor in (4) and replaced in the denominator
of the second factor the matrix g0 by a block-tridiagonal
matrix of block size b. This matrix can be viewed as an
effective Hamiltonian [13] and it is possible to perform
the matrix inverse of (4) by the recursive Green function
(RGF) technique [27,28]. In contrast to von Oppen et al.,
we have applied this method for quasi infinite system size
as described in reference [27]. The limit (6) can be directly
evaluated due to the self averaging behavior of the inverse
localization length. The non-vanishing blocks of g0 are de-
termined in a local approximation, i.e. to calculate (g0)xy
for x, y ∈ {x0 − b + 1, . . . , x0 + b} we apply equation (7)
for a finite system of size Nc > 2b containing the sites
x ∈ {x0−Nc/2 + 1, . . . , x0 +Nc/2}. This works if Nc and
b are sufficiently large compared to L1 because the matrix
elements (g0)xy do not depend on Nc if the sites x, y are
far away from the boundaries. For each iteration step of
the recursive Green function procedure the disorder re-
alization on the Nc sites is shifted by b sites and g0 has
to be recalculated by (7). We have chosen Nc = 3b and
calculated L2(b) for different values of the block sizes in
the interval 40 ≤ b ≤ 200. Here, we expect a much faster
(exponential) convergence of L2 as the ratio b/L1 becomes
larger than unity. In Figure 2, we compare for U = 1 and
different disorder values, 1.25 ≤ W ≤ 3.00, the localiza-
tion length L2(b) with the values obtained from the FSE
method.

We find overall agreement between both methods and
L2(b) indeed coincides with L2 for b ≥ bc ≈ 5L1. For small
disorder values it is quite difficult to arrive at this regime.
For b < bc the values of L2(b) are typically larger than
the values obtained by the first method. To our knowl-
edge, the approach described above is indeed the first
method to determine directly the TIP localization length
for quasi infinite system size without the side effects of a
bag-interaction [6,10]. This is possible, because the cutoff
is applied on an effective Hamiltonian and the neglected
matrix elements are indeed exponentially small if the block
size b is sufficiently large. The results shown in Figure 2
provide therefore an additional support of the validity of
the above discussed extrapolation scheme.

For a systematic study of the dependence on W and
U , we used the first variant based on the FSE scheme (9)
which appears to be more efficient, especially for large val-
ues of L1. For the scope of this paper, we studied the band
center E = 0 where the localization properties are sym-
metric with respect to the sign of U . We considered for the
disorder values 1.0 ≤ W ≤ 7.0 and interaction strengths
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Fig. 2. Localization length L2(b) (on a logarithmic scale) for
U = 1 and E = 0 obtained by the second method (recursive
Green function method applied on (4)) versus the inverse block
size 1/b (40 ≤ b ≤ 200). The dashed lines correspond to the
values of L2 obtained by the first method (finite size extrapo-
lation).
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Fig. 3. Enhancement factor L2/L1 as a function of L1 =
105/W 2. L2 is extrapolated as in (9) using system sizes up
to N ≤ 1000. The considered disorder values are W =
1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7. The error-bars are esti-
mated by assuming that the error of the extrapolated inverse
localization length 1/L2 has the same absolute value as the
(2%) error of 1/L2(N) at N = 500.

0.0 ≤ U ≤ 2.0 at least system sizes up to N = 500 and
for W ≤ 1.75 even sizes up to N = 1000. (For W = 1.0
and U = 1.5, 2.0, we have also calculated two data-points
with N = 1400.) Most of the data points (for the finite
size values L2(N)) were determined with a relative error
smaller than 2%. For the largest system sizes and small-
est disorder values the relative error is 3− 3.5%. To verify
the scaling relation L2/L1 ≈ 0.5 + 0.054 |U |L1 suggested
by von Oppen et al. [13], we show in Figure 3 the ratio
L2/L1 as a function of L1 where L2 has been obtained
by FSE from L2(N). Here we have roughly estimated the
error of the extrapolated value 1/L2 by assuming that it
has the same absolute value as the error of 1/L2(N) at
N = 500 which is 2%. If L2(500) is smaller than to L2 (as
for the smallest disorder values, see Fig. 1) one obtains
in this way an enhanced relative error of L2. Generally,
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Fig. 4. Dependence of L2 on W for U = 1 (double log-scale).
The data-points are the same as in Figure 3. The full curve is
the fit L2 = L1 (0.55 + 0.038L1) with L1 = 105/W 2. The two
dashed lines correspond to the limiting cases L2 = 0.038L2

1 ∝
W−4 (or L2 = 0.55L1 ∝ W−2) for L1 � 10 (L1 � 10). The
dotted line corresponds the behavior ∝ W−3 for comparison.
The errors-bars (see Fig. 3) are smaller than the size of the
data points due to the logarithmic representation.

this estimate is rather generous since it does not take into
account that the linear fit according to equation (9) ac-
tually corresponds to an effective further average, tending
to reduce the statistical error.

The linear behavior in L1 is qualitatively indeed con-
firmed but the errors for the smaller disorder values do not
allow to exclude a behavior of the type (L2/L1−0.5) ∝ Lα1
with α < 1. A corresponding fit indeed gives α ≈ 0.9 but
this depends also on the chosen offset 0.5 (the fit with the
offset 0.55 gives α ≈ 1.0). We mention that the slight devi-
ations from the linear behavior can also be well-described
by an ansatz of the type (L2/L1 − 0.5) ∝ L1/ ln(C L1)
suggested by Borgonovi et al. [12]. However, since the
precision of the data does not permit to distinguish sig-
nificantly between this and the linear behavior, we do
not enter into more details here. For U = 0, we confirm
the previous observation [22,25] of a slight enhancement
L2(U = 0)/L1 ≈ 0.5−0.7 which is presumably due to the
energy average in equation (5) [22,25].

In Figure 4, we also show the dependence of L2 on the
disorder strength W (for U = 1 and E = 0). Previously,
Song et al. [22] found a behavior L2 ∝ W−2.9 and as we
can see the overall slope in Figure 4 is indeed comparable
to this behavior. However, we find for small and large W
values significant deviations due to the curvature in the
curve of ln(L2) versus ln(W ). This is due to the constant
term in the above scaling relation. Actually, the data can
be extremely well fitted by L2 ≈ L1(0.55 + 0.038L1) for
the whole interval 1.0 ≤W ≤ 7.0 and one indeed finds the
asymptotic behavior L2 ∝ W−4 for small W (L1 � 10)
and L2 ∝W−2 for larger values of W (1 < L1 < 10).

To extract the dependence on U , we determined the
slope c(U) in the linear fit L2/L1 = a + c(U)L1 which is
compared in Figure 5 with the numerical data. The slope
c(U) itself is shown in the insert of Figure 5 as a function
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Fig. 5. L2/L1 versus the scaling parameter c(U)L1 for the
data of Figure 3 (points) where the quantity c(U) is given by
equation (24) with A = 0.028 and kc = 0.25 (see text). The
symbols for the different U values are the same as in Figure 3.
The dashed line corresponds to L2/L1 = 0.5 + c(U)L1. The
insert shows c(U) as a function of U . The data points are the
values obtained as the slope in the fit L2/L1 = a + c(U)L1.
The full line is the analytical expression (24) (same values for
A and kc as above), the dotted line is the linear dependence
0.054U found in reference [13] and the dashed line is the de-
pendence suggested in reference [14].

of U . Apparently, the U dependence is not linear for the
whole interval 0.0 ≤ U ≤ 2.0. This linear behavior was
observed by von Oppen et al. [13] for U ≤ 1.0 where the
discrepancy is still quite moderate. At U = 1.0 their values
are about 40% larger than ours. We believe that this is due
to finite size effects and the applied approximations.

Also the estimate c(U) ∝ |U |/
√

1 + (U/4)2 based on
the analytical calculation of the Breit-Wigner width for
W = 0 [14] only agrees with the numerical data for suffi-
ciently small U . In the next section, we will try to explain
this disagreement and reconsider the determination of the
Breit-Wigner width.

3 Breit-Wigner width and U dependence

The delocalization effect of two interacting particles is re-
lated to the finite life time τ = Γ−1 of the product states
|αβ〉 with 〈x1 x2|αβ〉 = ϕα(x1)ϕβ(x2) [6,7,9]. The inter-
action gives rise to transitions |αβ〉 → |γδ〉 which can be
viewed as random hops of typical size L1. For short time
scales when quantum interference effects can be neglected
one therefore obtains a diffusive dynamics [6,9] with the
diffusion constant D ∼ L2

1τ
−1 = L2

1Γ . Following a general
argument developed in reference [31] and applied to the
TIP case in references [6,9], one can estimate the localiza-
tion length due to quantum interference effects. According
to this the classical diffusive behavior is only valid for time
scales smaller than the Heisenberg time corresponding to
a wave packet of width

√
Dt, i.e.

t < tH(t) = νeff

√
Dt. (10)
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Here νeff is the density of states per length such that
(Lνeff)−1 is the level spacing in a block of size L. For the
TIP, we have νeff ≈ ν2 L1 with ν2(E) being the energy
dependent two-particle density of states. ν2(E) is propor-
tional to the inverse bandwidth 1/(8 + 2W ) ∼ 1 with a
logarithmic singularity at the band center (for W = 0).
The density νeff corresponds to the number of well cou-
pled pair states with the same center of mass coordinate
but with different relative coordinates (up to a maximal
value ∼ L1).

At t ≈ tc = ν2
effD, when the condition (10) ceases

to be valid, the discrete energy spectrum can be resolved
and localization with a localization length L2 ∼

√
Dtc ∼

νeff D sets in. This general relation for quasi 1d systems
has also been obtained in a more rigorous way using the
supersymmetric non-linear σ-model [2]. In view of this,
the Breit-Wigner width Γ and L2 are related by

L2 ∼ νeff D ∼ L
3
1 Γν2. (11)

Jacquod et al. [14] determined Γ using diagrammatic per-
turbation theory (in U) for the case of vanishing disorder,
W = 0, and finite system size N . They argued that one
obtains a good estimate of Γ for finite W by replacing
N with L1 due to the ballistic dynamics in 1d for length
scales up to L1. For energies close to the band center and
moderate interaction strengths U . 1, their result reads

L2 ∼ L
2
1

|U |√
1 + (U/4)4

· (12)

As we can see in the insert of Figure 5 our numerical data
agrees with this behavior only for very small values of U .
We therefore feel that it is justified to reconsider the issue
of the Breit-Wigner width which can be calculated from
the energy dependent local density of states

ραβ(E) = −
1

π
Im 〈αβ| (E + i0−H)−1 |αβ〉, (13)

with |αβ〉 as above. Using Schur’s formula to perform the
matrix inverse, we rewrite (13) as

ραβ(E) = −
1

π
Im
[
E + i0−Eα −Eβ (14)

−〈αβ| Û |αβ〉 + Γαβ/2
]−1

,

Γαβ = Γ
(0)
αβ + iΓ

(1)
αβ (15)

= −2〈αβ| Û (E + i0− H̃) Û |αβ〉.

Here Û = U
∑
x |xx〉〈xx| is the interaction operator and

H̃ = P̃ H P̃ with the projector P̃ = 1 − |αβ〉〈αβ|. Equa-
tion (14) corresponds to the Lorentzian or Breit-Wigner
form of the local density of states provided that the en-

ergy dependence of Γαβ is weak. The imaginary part Γ
(1)
αβ

is the width of the Lorentzian. In the following, we replace
H̃ by H, and we first evaluate (15) for the case of vanish-
ing disorder. For this we only need the projected Green

function (3) due to the appearance of Û in (15). In view
of equation (4), we first determine

(g0)xy = 〈xx| (E + i0−H0)−1 |yy〉 (16)

≈
1

2π

∫ π

−π
dk eik(x−y)g̃0(k)

with

g̃0(k) =
1

2π

∫ π

−π
dq

1

E + i0 + 2[cos(q) + cos(k − q)]

= −i
1√

4 cos2(k/2)−E2
· (17)

The Green function at W = 0 and U 6= 0 is then given by

gxy =
1

2π

∫ π

−π
dk eik(x−y) g̃0(k)

1− U g̃0(k)
· (18)

From this and equation (15), we obtain

Γαβ = −2U2
∑
x,y

ϕ∗α(x)ϕ∗β(x) gxy ϕα(y)ϕβ(y). (19)

Inserting the plane wave eigenstates for ϕα or ϕβ , we ex-
actly recover the result of reference [14] for the Breit-
Wigner width. This shows that the diagrammatic ap-
proach of [14] is equivalent to our above approximations

(replacing H̃ by H and continuum limit for k).
The generalization to the disordered case essentially

gives rise to two modifications. Using diagrammatic per-
turbation theory in the disorder, one can first evaluate the
average of the Green functions (16, 17) which amounts to
the replacement E + i0 → E + iγ where γ is determined
by a Dyson equation. For weak disorder one finds γ ∼W 2

(with eventual logarithmic corrections at the band cen-
ter). In the following discussion, we neglect the effect of
this small γ which essentially regularizes (17) at the sin-
gularity. The second, more important, modification due to
finite disorder concerns the eigenfunctions ϕα(x) in equa-
tion (19). Here the energy dependence of the one particle
localization length plays an important role. To see this,
we use the toy ansatz

ϕα(x) ≈
1√
L1,α

e−|x−xα|/L1,α+i kα x (20)

with Eα = −2 coskα and an energy dependent localiza-
tion length L1,α ≈ L1 sin2(kα) [1]. This ansatz essentially
corresponds to a particle moving ballistically with a well
defined momentum inside the localization domain around
xα. This is indeed reasonable because in one dimension
the mean free path is of the same order as the localization
length. However, the momentum has to be larger than its
typical uncertainty, i.e. |kα| & ∆k ∼ L−1

1,α. Therefore the

ansatz (20) is valid for momenta with | sin kα| & L
−1/3
1

corresponding to energies not being close to the band cen-
ter. Inserting (20) in (19) and choosing xα ≈ xβ , we obtain

Γαβ ≈ −2U2 1

L1,α + L2,α

g̃0(kα + kβ)

1− U g̃0(kα + kβ)
(21)
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giving rise to the Breit-Wigner width (for E = 0)

Γ
(1)
αβ ≈

U2/(4L1)

sin2 kα + sin2 kβ

| cos[(kα + kβ)/2]|

cos2[(kα + kβ)/2] + (U/4)2
·

(22)

These expressions differ by the k-dependent localization

length from the result of reference [14]. Since Γ
(1)
αβ depends

strongly on the momenta kα and kβ , we determine the
average with respect to these momenta [14]:

Γ =
1

4π2

∫ π

−π
dkα

∫ π

−π
dkβ δ(E −Eα −Eβ) /ν2(E). (23)

Using equation (11), relating Γ with L2, we can estimate
for E → 0 the two particle localization length as

L2 ≈ c(U)L2
1 ,

c(U) = A
2

π2

∫ π

0

dk
1

(sin2 k + k2
c )

(U/4)2

sin2 k + (U/4)2
(24)

=
2A |U |

πkc

s(U4 ) + k2
c

|U | s(U4 )
√
s(kc) + 4kc s(kc)

√
s(U4 )

where s(x) = 1 + x2, A is a numerical prefactor and kc is
a cutoff value to regularize the integral for small k where
the ballistic ansatz (20) is invalid. For the values kc = 0.25
and A = 0.028 the U -dependence of (24) fits very well the
numerical data for the slope c(U) which can be seen in Fig-
ure 5. We can considerably simplify the somewhat lengthy
expression (24) by neglecting the quadratic corrections U2

and k2
c and slightly modifying A,

c(U) ≈ 0.074
|U |

|U |+ 1
· (25)

This approximation is numerically very accurate with an
relative error smaller than 1% for 0 ≤ |U | ≤ 2.0. The linear
behavior of c(U) for small |U | is due to a combination of
the logarithmic singularity in the density of states at E →

0 and of large values of Γ
(1)
αβ ∼ U if cos[(kα+kβ)/2] ≈ ±U .

In view of the agreement between the numerical data
and the theoretical estimate for c(U), we conclude that
the idea of diffusively moving particle pairs for short time
scales finally becoming localized due to quantum interfer-
ence [6,7,9,14] can indeed quantitatively explain the delo-
calization effect. For this it is important to evaluate care-
fully the Breit-Wigner width by taking into account the
energy dependence of the one particle localization length.

Despite this agreement we want to emphasize that the
result (24) is nevertheless based on several qualitative ar-
guments. Actually, the application of the relation (11)
is somewhat problematic because both the Breit-Wigner
width and the one-particle localization length do not have
unique values due to their energy dependence. It is a pri-
ori not clear if the simple average (23) is really sufficient
and accurate. Furthermore, equations (24, 25) depend on
the artificial cutoff parameter kc. Theoretically, we expect

that kc ∼ L
−1/3
1 because of the invalidity of the ballistic

ansatz (20) for small momenta |k| < kc. Numerically, the
case kc = 0.25 indeed corresponds to L1 ≈ 50−100 the
largest considered L1 values. However, the resulting de-

pendence on L1, i.e. L2 ∼ L
7/3
1 clearly disagrees with the

numerical data. We attribute this to the fact that for small
momenta according to L1,α ≈ L1 sin2 kα the effective size
of the random hops is strongly reduced. This feature is not
properly taken into account in the relation (11). Therefore
it would be interesting to carefully generalize this relation
to the case where Γ and L1 have complicated distributions
instead of unique values.

4 Conclusion

In this work, we have presented and applied two new accu-
rate and efficient variants of the Greens function method
originally introduced by von Oppen et al. [13] to study
the TIP localization problem [6]. Our results for the TIP
localization length L2 can be well-fitted (Fig. 5) by the
functional form L2 = L1[0.5 + c(U)L1]. The behavior of
the slope c(U) ≈ 0.074 |U |/(1 + |U |) is determined by
the U -dependence of the Breit-Wigner width Γ of non-
interacting pair states. For this we presented an accurate
estimate of Γ extending former work of Jacquod et al. [14].

We think that our results provide important additional
evidence for the delocalization effect as such. In particular,
we find for U = 2.0 and W = 1.0 an enhancement factor
L2/(2L1) ≈ 11.5. Our data is in qualitative agreement
with former results of Song et al. [22], who directly used
the less efficient recursive Green function technique for
smaller system sizes (N ≤ 200), and with very recent work
[25,26] based on the decimation method (N ≤ 251 and
N ≤ 300). In view of this the original claim of Römer
et al. [23] that there is no delocalization effect for infinite
system size can no longer be maintained. To understand
the transfer matrix data on which this claim was based,
we remind that the considered disorder value W = 3.0
was relatively large such that L2 and L1 are nearly equal.
Using, the Green function method one can still measure
the enhancement because L2 > L1/2. However, in the
transfer matrix approach there is a direct competition of
L2 with L1 [26]. Furthermore, even for smaller disorder,
the finite size behavior of the transmission eigenvalues is
very subtle and one has to be careful about the finite size
extrapolation here [32].

While the delocalization effect is now well established,
the situation is less clear concerning the functional de-
pendence of L2 on L1. The formerly observed power law
L2 ∼ Lα1 with α ≈ 1.45 − 1.65 [10,22,25] was obtained
by a fit ansatz without constant term. According to our
above discussion (see Fig. 4) it is numerically not obvious
to distinguish this power law from the functional form we
proposed above. Waintal et al. [20] gave an argument in
favor of the former with α = 1.5. This argument is based
on the multi fractal properties of the interaction induced
coupling matrix elements in combination with an estimate
of Γ using Fermi’s golden rule. We believe that this anal-
ysis is indeed important and very relevant to the prob-
lem. Actually, our result (22) for the Breit-Wigner width
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contains a strong dependence on the initial one-particle
states due to partial momentum conservation. This leads
to strong fluctuations of Γ which are presumably directly
related to the multi fractal statistics of the coupling ma-
trix elements. However, the analytical calculations of ref-
erence [14] and of Section 3 clearly show that the simple
application of Fermi’s golden rule is not sufficient and the
numerical data do not show the corresponding behavior
L2 ∼ U2. To understand these issues in more detail fur-
ther work is necessary.

We emphasize that our numerical data and the es-
timate (24) are valid for moderate interaction strengths
|U | ≤ 2.0. For larger values of U one expects that L2 will
be reduced due to the particular projector structure of
the interaction operator Û . Waintal et al. [20] presented
a duality transformation mapping the case of |U | � 1 to
a similar problem with |U | � 1 and a different reference
basis. According to this L2(U) should obey the duality
relation L2(U) ≈ L2(

√
24/U) [20].

Finally, we mention that the numerical trick to evalu-
ate efficiently the matrix g0 via equation (7) also works in
higher dimensions, even though the gain is less spectacu-
lar. In d dimensions and a system of total size (volume)
N one can calculate G(1)(E) by the recursive Green func-
tion method which provides an algorithm to evaluate (7)
with N3+(d−1)/d operations. In particular the case of two
dimensions is important due to recent claims of Ortuno
et al. and Cuevas [33] for a delocalization transition for
two interacting particles in d = 2. We think it is necessary
to consider larger system sizes as in reference [33] in order
to decide whether there is a real transition or a very strong
delocalization with a finite but very large two-particle lo-
calization length as it was argued by Shepelyansky [9].

The author thanks Dima Shepelyansky and Bertrand Georgeot
for inspiring discussions. The Aspen Center for Physics is ac-
knowledged for its hospitality during the workshop Quantum
Chaos and Mesoscopic Systems at which a part of this work
was done.
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